YEAR SIX:
 NUMBER\&PLACE VALUE

Balance

Y EAR S IX

NATIONAL CURRICULUM

- Read, write, order and compare numbers up to 10,000,000 and determine the value of each dig

OBJECTIVES

- Explain the place value in numbers up to 10,000,000
- Order a set of numbers to 10,000,000
- Understand how a number can be partitioned into different
- Multiply and divide numbers by 10 and 1,000 and explain the effect on the size of the digits in the number
- Round any whole number to a required degree of accuracy

Round numbers to the nearest 1,000,000

- Estimate the answers to calculations by rounding and comparing answers

Use negative numbers in context, and calculate intervals across zero

- Solve problems involving negative numbers linked to temperature, money and measures, eg find the difference between two temperatures when one is negative.
- Solve logic and reasoning problems involving rounding, e.g. guess my number with a rang clues suchas, my number rounded to the nearest 10,000 is 60,000
- Solve multi-step problems involving negative numbers, e.g. give debits and credits into a bank over a week with a starting balance of $f 100$ and an overdraft of $£ 150$
- Solve number and practical problems that involve all of the above
- Solve problems involving place value, including word problems and problems

WORKING

DEEPER

- Solve logic and reasoning problems involving understanding of place value in numbers to 10,000,000 including

Balance

YEAR SIX:
ADDITION \& SUBTRACTION
YEAR SIX:

NATIONAL
CURRICULUM

Perform mental calculations,
including with mixed
operations and large numbers

OBJECTIVES

- Can mentally add and subtract numbers including decimal using a variety of strategies.
- Can understand and use brackets.
- Can understand the order of operations, BODMAS

WORKING DEEPER

- Reason about which method of efficient.

Use their knowledge of the order of operations to carry out calculations involving the four operations.

Can make a number sentence true by completing the missing boxes while applying BODMAS.

- Solve addition and subtraction multi-step problems in contexts deciding which operations and methods to use and why.
- Can use addition and/or subtraction strategies to solve a
complex problem. with more than one step.

Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

Can use rounding to estimate the answer.
Can use estimating to consider whether their answer is appropriate.

- Can use the inverse to check the answer

MULTIPLICATION \& DIVISION

NATIONAL

- Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.

CURRICULUM

OBJECTIVES

- Use mental strategies to approximate answers to multiplication and division calculations
- Use an appropriate forma written method to multiply numbers up to ThHTU by TU
-

WORKING
 DEEPER

- Identify the calculations needed to solve a multiplication word problem involving more than one step
- Solve complex word problems involving multiplication
- Solve multiplication word problems linked to money and neasures
- Correct a multiplication calculation completed with errors and explain reasoning
- Can explain the steps and methods in an addition and subtraction problem and the reasons for them.
- Divide numbers up to 4 digits by a two-digit whole number using the formal written method flong division and interpret remainders as whole numbe remainders, fractions, or by rounding, as appropriate for th context

Use an expanded written method to divide ThHTU by TU - Use a standard written method f long division to divide ThHTU by TU

- Interpret remainders accurately

Can use estimating to consider whether their answer is appropriate.

- Divide numbers up to 4 digits by a two-digit number using th formal written method of short division where appropriate, interpreting remainders according to the context.
- Use a standard written method of short division to divide ThHTU by U
- Use a standard written method of short division to divide ThHTU by TU
- Interpret remainders accurately
- Identify the calculations needed to solve a long division word problem involving more than one step
- Solve complex word problems involving long division - Solve long division word measures
- Correct a long division calculation completed with errors and explain reasoning
- Identify the calculations needed to solve a short d word problem involving m than one step
- Solve complex word prob involving short division
- Solve short division word Sobems linked to word measures
- Correct a short division calculation completed with errors and explain reasoning

Balance

YEAR SIX:
FRACTIONS, DECIMALS \& PERCENTAGE

Balance

NATIONAL
CURRICULUM

- Perform mental calculations, including with mixed operations and large numbers
- Identify common factors common multiples and prime numbers

OBJECTIVES

- Decide when to use a mental method, informal jottings or a written method for calculations written method for calcu
- Identify an appropriate strategy to solve a mental calculation, e.g calculate 24×15, then multiply 24×10 and then halve this to get 24×5, adding these two results together.
- Approximate effectively using rounding
- Derive facts involving decimals

Use knowledge of square numbers to derive square of multiples of 10 , e.g. 60×60.

- Identify common factors of 2 digit numbers
- Identify common multiples of 2 digit numbers
- Identify prime numbers to 100 and begin to recall these
- Understand the order of BODMAS and use this to solve calculations

WORKING DEEPER

- Solve inverse problems involving multiplication and division
- Solve missing number and "। think of a number" problems involving multiplication and division.

Understand and use the term Lowest Common Multiple to investigate multiples
Investigate prime numbers, e.g. which 3 prime numbers multiply to make 231?
Use known facts and divisibility tests to identify common factors of numbers

- Solve reasoning questions involving the order of operations, e.g. true or false, are these calculations equivalent?

NATIONAL CURRICULUM

Use their knowledge of the order of operations to carry out operations

OBJECTIVES

WORKING

DEEPER

- Use common factors to simplify fractions; use common multiples to express fractions in the same denomination
- Compare and order fractions, including fractions > 1
- Add and subtract fraction with different denominators and mixed numbers, using the concept of equivalent fractions
- Multiply simple pairs of proper fractions, writing the answer in its simplest form
- Understand equivalent fractions have common multiples
- Using diagrams can see fractions are the same when simplified.
- Can simplify fractions by dividing the numerator and denominator by a common factor
- Can convert fractions into common denominators
- Can use decimal equivalence to order and compare fractions.
- Use knowledge of equivalent fractions to add fractions
- Convert mixed numbers into improper fractions.
- Understand when multiplying by a fraction the answer will be by a frac
smaller.
- Using diagrams can understand when multiplying fractions by a fraction the answer will be smaller.
- Can follow a standard method to multiply fractions.
- Divide proper fractions by whole numbers

Can divide a proper fraction by a - Can reason why the follo whole number statement if this is true or

- Can explain how to divide a proper fraction, using diagrams if necessary to show understanding
- Can identify possible missing fractions in a given calculation
- Can reason why the following statement is true or false: the sum of two fractions is always greater than their product.
- Associate a fraction with division and calculate decimal fraction equivalents

Knows how a decimal fraction to calculated from a fraction

- Can recall common fraction and decimal equivalents
- Understand how to calculate a decimal from a fraction by dividing the numerator by the denominator.
- Can explore recurring equivalence of decimals and fractions.

Balance

YEAR SIX:
FRACTIONS, DECIMALS \& PERCENTAGES
YEAR SIX:
MEASUREMENT

- Identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10,100 and 1,000 giving answers up to three decimal places

OBJECTIVES

Understands the effect of multiplying a decimal by 10,10 and 1000 .
Understands the effect of dividing a decimal by 10,100 and 1000 .

WORKING
 DEEPER

Can explain why $2.34 / 10$ is the same as 23.4/100 are the same

NATIONAL CURRICULUM

- Solve problems involving the calculation and conversion of units of measure, using decima notation up to three decima places where appropriate
- Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places

OBJECTIVES

- Can recall approximate conversions and is able to tell if an answer is sensible.
- Can use decimal notation in a variety of formats to solve a problem.
- Can explain the relationship between conversions
- Can make estimates based on approximate conversions
-1 litre is approximately 2 pints
(more accurately, $1 \times / 4$ pints)
- 4.5 litres is approximately 1 gallon or 8 pints
- 1 kilogram is approximately 2 lb (more accurately, 2.2 lb) - 30 grams is approximately 1 oz -8 kilometres is approximately 5 miles
- Convert between miles and kilometres

Can use the conversion of miles to

Can measure and calculate the perimeter and area of composite rectilinear shapes

- Can calculate the perimeters of sompound shapes
- Can identify shapes that have the same area but have different perimeters
- Understands when to use a formula to find the area of a shape.
- Understands when to use the formula to find the volume of a shape.
km to apply to other facts.

Balance

WORKING

 DEEPERCan convert 2.3hrs into minutes

- Recognise that shapes with the same areas can have different perimeters and vice versa

Can solve problems where units of measure need to be converted more than once.

Can connect conversion (e.g. from kilometres to miles) to graphical representation.

- Recognise when it is possible to use formulae for area and volume of shapes

Can reason about the and perimeter of shapes and perimeter of shapes,
If you draw two rectangles and the second one has and the second one has first one, then the second will also have a greater area.

Can solve reasoning statements about area and statem

Balance

NATIONAL
CURRICULUM

- Calculate the area of parallelograms and triangles
- Can calculate the area of right angled triangles using their angled triangles using their rectangle.
- Can generalise how to find the area of a triangle
- Can calculate the area of a parallelogram using their knowledge of squares, rectangles and triangles.
- Calculate, estimate and compare volume of cubes and compare volume of cubes and including cubic centimetres (cm3) and cubic metres (m3) extending to other units (for example, mm3 and km3].
- Can choose the appropriate measure to find the volume of a shape, e.g. cm or m .
- Can compare and order the volume of different shapes using estimates.
- Can calculate the volume of a shape using the formula.

WORKING
DEEPER

- Can find the perimeter and area of a design where a mixture of shapes have been used.
- Can create a list of top tips to calculate, estimate and compare volume.

NATIONAL

 CURRICULUM- Draw 2D shapes using given dimensions and angles.

OBJECTIVES

WORKING

 DEEPERIdentify, visualise and describe properties of rectangles, triangles and regular polygons

- Use knowledge of properties to draw 2D shapes
- Use a ruler to measure accurately within 1 mm
- Use a ruler to draw lines accurately within 2 mm
- Use a protractor to measure angles accurately within 1 degree
- Use a protractor to draw angles
accurately within 2 degrees
- Construct a triangle given two sides and the included angle
- Recognise, describe and build simple 3D shapes, including making nets.
- Compare and classify geometric shapes based on their properties and sizes and find unknown angles in any regular polygons
- Illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius.

Identify, visualise and describe properties of 3D solids.

- Identify 3D shapes from their nets and explain why, including open and closed cubes
- Draw nets of 3D shapes with given dimensions.
- Recognise the properties of isosceles, right angled, equilateral and scalene triangles.
- Recognise the properties of squares, rectangles, rhombuses, parallelograms, trapeziums and kites.
- Explain why a polygon is regular or irregular.
- Identify whether a triangle is isosceles from known angles and sides.
- Find unknown angles in all triangles, given one angle.
- Know that the circumference is the distance around a circle
- Know that the radius is the distance from the centre to the circumference
- Know that the diameter is $2 x$ the radius
- Use the formula $\mathrm{C}=\pi \mathrm{m}$ to work out the circumference of a circle
- Can solve problems using angles, such as: A triangle has told that the biggest angle is 20° arger than the second biggest angle and 40° larger than the mallest angle. Work out how big each angle is.
- Reason whether statements are true or false, e.g. Pascal says that any net made with six squares can be folded to make a cube. Do you agree with him?
- Reason whether statements are true or false e.g. Pascal says that ny net made with six squares you agree with him?
- Solve problems and reasoning questions involving circles, e.g. compare a circle and an oval. What's the same and what's different?

GEOMETRY: PROPERTIES OF SHAPE

NATIONAL
CURRICULUM

Recognise angles where they meet at a point, are on a straight line, or are vertically opposite. Find missing angles.

- Estimate angles
- Use a protractor to measure and draw angles on their own and in shapes
- Know that the angle sum of a triangle is 180°
- Know that the angles on a straight line add to 180°
- Know that the sum of angles around a point is 360°
- Recognise vertically opposite angles and know that they are equal
- Find missing angles in a variety of contexts

WORKING
 DEEPER

- Can use unknown angles and lengths using algebra

GEOMETRY: PROPERTIES OF SHAP

E

\section*{NATIONAL

CURRICULUM

}
CURRICULUM

}- Describe positions on the full coordinate grid (all four quadrants)

OBJECTIVES

- Can draw an axis for the four quadrants with equal spacing and negative numbers.
- Can describe the vertices of a shape in all four quadrants
- Can use the properties of a shape shape.
- Draw and translate simple shapes on the coordinate plane, and reflect them in the axes.
- Can draw a shape after a reflection of a simple shape in two mirror lines.
- Can draw a shape after a shape has been translated across the four quadrants.
complete the vertices of the

YEAR SIX:

STATISTICS

NATIONAL CURRICULUM

- Interpret and construct pie charts and line graphs and use these to solve problems

OBJECTIVES

- Use knowledge of fractions and charts
- Construct a simple pie chart using common fractions
- Interpret a line graph when the answer lies between two given intervals
- Interpret a line graph that epresents a conversion, e.g miles/kilometres
- Calculate and interpret the mean as an average.
- Calculate the mean of a set of numbers
- Understand that the mean is an average and understand when it is appropriate to find the mean of a set of data

WORKING

 DEEPER- Can identify coordinates of a shape vertex after the shape has been reflected, translated or rotated.

Can express translation using algebra, e.g. (a, b) is $(a+2, b+$ 3).

WORKING DEEPER

Understand the size of ang within a pie chart and link these to common fractions and percentages

- Answer problems that require interpretation of line graphs and reasoning about the best value in a real life context, e.g. which phone tariff would be best?
- Reason about the mean amount e.g. if the mean of 5 numbers e.g. if the mean of 5 numbers
is 35 and the range is 12 what could the 5 numbers be?

Balance

YEAR SIX:
RATIO \& PROPORTION

WORKING DEEPER

- Can use logic to solve ratio problems, e.g. purple paint is made from red and blue paint in of purple paint, how much would I need of each colour? Explain your thinking.

NATIONAL

CURRICULUM

- Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts
- Understands ratio as a comparison of one part or amount with another
- Can confidently use the language of 'for every' when describing a ratio.
- Can use ratio to show the relative size of two quantities
- Can investigate possible answers to a question where one fraction has an impact on the other.
- Understands proportion as a fraction of the whole amount Can use percentages equivalents to describe a

Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.

OBJECTIVES

Solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison.
proportion

Understands direct proportion by scaling quantities up and down
Understands ratio as additive change or a multiplicative change

- Can scale up/down recipes for a given number.
- Solve problems involving similar known or can be found
- Can apply the use of proportion and ratio to other areas of learning, e.g. interpreting pie charts.
Can apply the use of

Solve problems where a percentage has an impact on the whole number eg in class of children, 25% are boys and the rest are girls. There are 18 girls. How many children are in the class?

Can unpick a problem, e.g. a recipe needs to include three times as much apple than peach. The total weight of apples and peaches in a recipe is 700 g . How much apple do I need?

Sole prons都

- Use simple formulae

```
* Use smplefomula
```

- Generate and describe linear number sequences
- Express missing number problems algebraically

ALGEBRA

NATIONAL
 CURRICULUM

OBJECTIVES

- Understands a value can be replaced by a number or a symbol
- Can solve missing box calculations by using inverse.
- Can use formulae for other areas of learning, e.g. perimeter and meas-
- Can substitute values into a formulae to find an answer. the equals sign
- Can create a number sequence given a rule to follow.
Understands a linear equation can be recursive, i.e. one number in the sequence is generated from the preceding number (e.g. by adding 3 to the preceding number)
be ordinal i.e the position of the number in the sequence generate the number (eg by multiplying the position by 3 , and then subtracting 2).

WORKING

DEEPER

- Can write simple formulae for "I think of a number" problems and use it to solve the reason why they work.
- Can create a linear equation to describe a visual pattern

Can use symbols to express missing - Solve missing facts in other number problems

- Can find values that satisfy the equation and make it a true statement.
Understands the associative law and can apply it to missing number problems
Understands the distributive law and can apply it to missing number problems
areas of mathematics, e. the properties of rectangle triangles to deduce related facts and find missing lengths angles.

YEAR SIX:

ALGEBRA

NATIONAL
CURRICULUM

- Find pairs of numbers that satisfy an equation with two unknowns.

OBJECTIVES

- Can substitute numbers into unknowns to find a given value where there are limited answers.

Balance

WORKING
 DEEPER

- Can find whole number values that satisfy an equation where there is more than one possibility, e.g. I bought some apples costing 10p and some pears costing 15 p. The total cost was 90 p. How many apples and pears could I have bought?
- Can reason the impact on one value if another was to be changed.

Terms and conditions
Any and all intellectual property rights in and relating to First4Maths Ltd, the service/or the Materials are owned by First4Maths Ltd. Unauthorised use of those Materials including reproduction, storage, distribution or republication without the prior written approval of First4Maths Ltd is strictly prohibited and will result in prosecution.

The names and logos of First4Maths Ltd and all related product and service names, designs, marks, logos and slogans are the trade names, service marks or trademarks of First4Maths Ltd and may not be used without the prior written approval of First4Maths Ltd

